27.4.20

I. Basic notions

Recall :

Smooth manifold := topological space M
 covered by charts s.t. transition maps are
 Smooth.

• $T_{X}M$, the tangent space at $x \in M$:= $\begin{cases} & \{ \chi : (-\varepsilon, \varepsilon) \rightarrow M \mid \chi(0) = x \} / \chi^{n}M \\ \otimes "_{\hat{x}}(0) = \dot{y}(0)" \end{cases}$ or $\begin{cases} D : C^{\infty}(M, \mathbb{R}) \rightarrow \mathbb{R} \mid D(f;g) = D(f) \cdot g(x) + f(x) \cdot D(g) \end{cases}$

•
$$TM$$
, the tangent bundle of M
:= $\bigcup_{x \in M} T_x M = \frac{1}{(x,v)} | v \in T_x M \frac{\pi}{2} M, \pi(x,v) = x$
(is a vector bundle over M)

• The differential of a smooth map f: M -> N is the smooth map df: TM -> TN s.t. - df(T_xM) C T_f(x) N When i - df_x := df_{T_xM}: T_xM -> T_f(x) N is linear

1. Def: x e M is a critical point of f: M-IN if rank (dfx) < win ¿ dim M, dim N\$ / otherwise x is a regular point. Correspondingly, fix) is called a critical or regular value of f. We call k = min { dim M, dim N\$ - rank (dfx) the corank of f at x.

2. Def: Let
$$f_i: M_i \rightarrow N_i$$
 be smooth, $i = 1, 2$.

Then f, and fz are topologically equivalent if there are homeomorphisms $v: M_1 \rightarrow M_2$, $L: N_1 \rightarrow N_2$ s.t. $M_1 = \frac{f_2}{N_1}$, i.e. $f_2 = L \circ f_1 \circ r^{-1}$ $M_2 = \frac{f_2}{N_2}$

but the singularity of
$$f_2$$
 at 0
is degenerate / unstable!
 $f_2(0) = 0$
 $f_2(0) = 0$
 $f_2(0) = 0$
 $f_2(x) = x^4 + Ex^2$ for $E \ll 0$
 $f_1(g_2) = \begin{cases} 4x^3 + 2Ex = 0 \\ 5x^4 + \frac{2}{2} = 0 \end{cases}$

3. Def: A smooth equivalence between
$$f_i: M_i \rightarrow N_i$$
, $i=1,2$,
is a commutative diagram
 $M_i = \frac{f_i}{N_i} N_i$ with r and l diffeomorphisms.
 $r_i = \frac{G}{N_i} + le$
 $M_2 = \frac{f_i}{N_2} + N_2$
Put abstractly, the group $Diff(M) \times Diff(N)$ acts on
on $C^{\infty}(M,N)$ by the left-right action
 $(r_i L), f = l \circ f \circ r^{-1}$

Put abstractly, the group
$$Diff(M) \times Diff(N)$$
 acts on
on $C^{\infty}(M,N)$ by the left-right action
 $(r, l), f = l \circ f \circ r^{-1}$

and first are smoothly equivalent if they belong to the same orbit of the left-right action.

Remark: Topological stability is defined similarly (replace diffeom. by homeom. everywhere). Eler stable & & top. stable &

It is often convenient (or necessary) to work with a local version of stability. This leads to the notion of map-germs/germs of

maps:

f and g are the "same" around X.

6. Def: A map-germ
$$f_1$$
 at x_1 is (left-right/smoothly)
equivalent to a map-germ f_2 at x_2 if there
exist diffeomorphism-germs r at x_1 , sending x_1 to
 x_2 , and k at $f(x_1)$, sending $f(x_1)$ to $f(x_2)$,
such that $\exists U_i^*$ a neighbourhood of x_2 , with
 $lof_i \circ r' = f_2$ on U .

E.G.
The map germs
$$f_1(x) = x^2$$
 and $f_2(x) = x^4$
at 0 are topologically equivalent, but not
left-right equivalent.
The germ f_1 at 0 is stable while the germ
 f_2 at 0 is not.